视频监控正在快速普及,众多的视频监控应用迫切需要一种远距离、用户非配合状态下的快速身份识别技术,以求远距离快速确认人员身份,实现智能预警。人脸识别技术无疑是最佳的选择,采用快速人脸检测技术可以从监控视频图象中实时查找人脸,并与人脸数据库进行实时比对,从而实现快速身份识别。但近距离人脸识别技术对用户的种种限制使得其在视频监控中难以使用。面向视频监控的远距离人脸识别技术在强劲的需求带动下应运而生。
由于视频监控摄像机距离目标较远且用户处于非配合的运动状态,使得采集质量好的人脸图像比较困难,极易产生运动模糊,所采集图像的质量远低于近距离配合状态下获取的人脸图像;同时由于用户处于非配合的运动状态,活动更自由,侧脸和背对摄像机的概率大大增加,这就给人脸检测、人脸跟踪、人脸对比识别带来相当大的困难;此外。监控场景中通常会有多人同时出现,身体容易相互遮挡,给身份关联带来一定的困难,且系统还需要对每一个人保持跟踪识别,这一系列因素导致面向视频监控的远距离人脸识别难度非常大。
经过长期持续的研究探索,在视频监控人脸识别技术上取得重大阶段性进展,使得把人脸识别技术应用在视频监控上成为可能。 相对于近红外人脸识别技术,可见光人脸识别会受到光线变化的影响和照片视频的攻击,但另一方因其可以很方便的与现有各种普通监控摄像头联系,不需要专用的红外摄像头,所以在与传统监控相结合,乃至升级都比较方便。 但其自身局限性也决定了其识别准确率远不及近红外技术,所以建议开发者使用在辅助人工之场合,例如人脸监控,VIP通道等。
基本方法;人脸识别的方法很多,主要的人脸识别方法有:
(1)几何特征的人脸识别方法:几何特征可以是眼、鼻、嘴等的形状和它们之间的几何关系(如相互之间的距离)。这些算法识别速度快,需要的内存小,但识别率较低。
(2)基于特征脸(PCA)的人脸识别方法:特征脸方法是基于KL变换的人脸识别方法,KL变换是图像压缩的一种最优正交变换。高维的图像空间经过KL变换后得到一组新的正交基,保留其中重要的正交基,由这些基可以张成低维线性空间。如果假设人脸在这些低维线性空间的投影具有可分性,就可以将这些投影用作识别的特征矢量,这就是特征脸方法的基本思想。这些方法需要较多的训练样本,而且完全是基于图像灰度的统计特性的。目前有一些改进型的特征脸方法。
(3)神经网络的人脸识别方法:神经网络的输入可以是降低分辨率的人脸图像、局部区域的自相关函数、局部纹理的二阶矩等。这类方法同样需要较多的样本进行训练,而在许多应用中,样本数量是很有限的。
(4)弹性图匹配的人脸识别方法:弹性图匹配法在二维的空间中定义了一种对于通常的人脸变形具有一定的不变性的距离,并采用属性拓扑图来代表人脸,拓扑图的任一顶点均包含一特征向量,用来记录人脸在该顶点位置附近的信息。该方法结合了灰度特性和几何因素,在比对时可以允许图像存在弹性形变,在克服表情变化对识别的影响方面收到了较好的效果,同时对于单个人也不再需要多个样本进行训练。
(5)线段Hausdorff 距离(LHD) 的人脸识别方法:心理学的研究表明,人类在识别轮廓图(比如漫画)的速度和准确度上丝毫不比识别灰度图差。LHD是基于从人脸灰度图像中提取出来的线段图的,它定义的是两个线段集之间的距离,与众不同的是,LHD并不建立不同线段集之间线段的一一对应关系,因此它更能适应线段图之间的微小变化。实验结果表明,LHD在不同光照条件下和不同姿态情况下都有非常出色的表现,但是它在大表情的情况下识别效果不好。
(6)支持向量机(SVM) 的人脸识别方法:近年来,支持向量机是统计模式识别领域的一个新的热点,它试图使得学习机在经验风险和泛化能力上达到一种妥协,从而提高学习机的性能。支持向量机主要解决的是一个2分类问题,它的基本思想是试图把一个低维的线性不可分的问题转化成一个高维的线性可分的问题。通常的实验结果表明SVM有较好的识别率,但是它需要大量的训练样本(每类300个),这在实际应用中往往是不现实的。而且支持向量机训练时间长,方法实现复杂,该函数的取法没有统一的理论。
技术细节;一般来说,人脸识别系统包括图像摄取、人脸定位、图像预处理、以及人脸识别(身份确认或者身份查找)。系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图象或者相应的编码,而其输出则是一系列相似度得分,表明待识别的人脸的身份。
目前人脸识别的算法可以分类为:
基于人脸特征点的识别算法(Feature-based recognition algorithms)。
基于整幅人脸图像的识别算法(Appearance-based recognition algorithms)。
基于模板的识别算法(Template-based recognition algorithms)。
利用神经网络进行识别的算法(Recognition algorithms using neural network)。
主要功能;行者人脸识别服务器人脸识别的应用主要有:
门禁系统:受安全保护的地区可以通过人脸识别辨识试图进入者的身份。
摄像监视系统:在例如机场、体育场、超级市场等公共场所对人群进行监视,以达到身份识别的目的。例如在机场安装监视系统以防止恐怖分子登机。
网络应用:利用人脸识别辅助信用卡网络支付,以防止非信用卡的拥有者使用信用卡等。
人脸注册,人脸检测,人脸识别,人脸比对
识别快速:识别时间小于1秒
准确率:达到85%
支持比对:1:1;1:N
多人脸实时监测:能同时检测和识别同一监控视频流中的多个脸部。
人脸识别 - 应用展位
1.企业、住宅安全和管理。如人脸识别门禁考勤系统,人脸识别防盗门等。
2.电子护照及身份证。这或许是未来规模最大的应用。在国际民航组织( ICAO)已确定,从 2010年 4月 1日起,其 118个成员国家和地区,必须使用机读护照,人脸识别技术是首推识别模式,该规定已经成为国际标准。美国已经要求和它有出入免签证协议的国家在2006年10月 26日之前必须使用结合了人脸指纹等生物特征的电子护照系统,到 2006年底已经有 50多个国家实现了这样的系统。今年年初,美国运输安全署( Transportation Security Administration)计划在全美推广一项基于生物特征的国内通用旅行证件。欧洲很多国家也在计划或者正在实施类似的计划,用包含生物特征的证件对旅客进行识别和管理。中国的电子护照计划公安部一所正在加紧规划和实施。
3.公安、司法和刑侦。如利用人脸识别系统和网络,在全国范围内搜捕逃犯。
4.自助服务。如银行的自动提款机,如果用户卡片和密码被盗,就会被他人冒取现金。如果同时应用人脸识别就会避免这种情况的发生。
5.信息安全。如计算机登录、电子政务和电子商务。在电子商务中交易全部在网上完成,电子政务中的很多审批流程也都搬到了网上。而当前,交易或者审批的授权都是靠密码来实现。如果密码被盗,就无法保证安全。如果使用生物特征,就可以做到当事人在网上的数字身份和真实身份统一。从而大大增加电子商务和电子政务系统的可靠性。
最新应用;2012年,上海虹桥站、天津西站和济南西站三个车站安检区域将安装用于身份识别的高科技安检系统——人脸识别系统,以协助公安部门抓捕在逃案犯。
2013年7月。芬兰一家企业推出全球首个“刷脸”支付系统。结账时,消费者只需在收银台面对POS机屏幕上的摄像头,系统自动拍照,扫描消费者面部,等身份信息显示出后,在触摸显示屏上点击确认完成交易。无需信用卡、钱包或手机。整个交易过程不超5秒钟。不过,也有人认为,“这点时间,通常也就够你拿出钱包”。
芬兰初创公司Uniqul已为这套基于面部识别技术的“刷脸”支付系统申请专利[